Networking Tutorial 1: Introduction to Networks

Summary

Basic properties of networks are introduced and described, with some reference to available libraries
and software. Sockets are presented, along with the concepts of the server and the client. An event-
based network library is discussed, and some of its properties are outlined with accompanying code
samples.

New Concepts
Sockets, Server and Client, ENet

Introduction

The concept of games, in a general sense, has historically been connected to a multi-player experience.
Chess against yourself can be enjoyable, but the game is intended to be played against an opponent.
Early computer gaming is fairly unique in that regard, as many PC and console games were a single
user experience with the player pit against a virtual opponent (defined by rules and state machines,
as discussed in our Al tutorials).

In terms of computer gaming, we can categorise the nature of our multi-player experience by several
criteria. Is the game executing in real-time (e.g., a multi-player FPS)? Is the game turn-based (e.g.,
chess)? Are players sharing a platform, or playing on multiple platforms? Are they geographically
co-located, or on opposite sides of the planet?

The simplest form of multi-player gaming, if we assume all players are using the same platform,
involves no networking whatsoever - consider playing a racing game in the lounge with a few of your

friends around visiting, or a football management simulator played turn-by-turn. Increasingly, how-
ever, games are expected to provision a multi-player experience for players across the internet.

To do that requires an understanding of both the technologies involved in message-passing using
a network connection, and the theoretical issues facing any real-time distributed simulation. This
tutorial addresses the former, and the second tutorial in this series will address the latter. We begin
with discussion of sockets, and the approaches we can take to pass messages between systems, before
moving onto the server-client relationship, and present a specific API which provisions event-based
message passing from system to system.

Sockets

A socket is a mechanism for allowing communication between processes, be it programs running on
the same machine or different computers connected on a network. More specifically, Internet sockets
provide a programming interface to the network protocol stack that is managed by the operating sys-
tem. Using this API, a programmer can quickly initialise a socket and send messages without having
to worry about issues such as packet framing or transmission control.

There are a number of different types of sockets available, but we are only really interested in two
specific Internet sockets. These are:

e Stream sockets
e Datagram sockets

What differentiates these two socket types is the transport protocol used for data transmission.
A stream socket uses the Transmission Control Protocol (TCP) for sending messages. TCP provides
an ordered and reliable connection between two hosts. This means that for every message sent, TCP
guarantees that the message will arrive at the host in the correct order. This is achieved at the trans-
port layer so the programmer does not have to worry about this, it is all done for you.

A datagram socket uses the User Datagram Protocol (UDP) for sending messages. UDP is a much
simpler protocol as it does not provide any of the delivery guarantees that TCP does. Messages, called
datagrams, can be sent to another host without requiring any prior communication or a connection
having been established. As such, using UDP can lead to lost messages or messages being received
out of order. It is assumed that the application can tolerate an occasional lost message or that the
application will handle the issue of retransmission.

There are advantages and disadvantages to using either protocol and it will be highly dependant of
the application context. For example, when transferring a file you want to ensure that, upon receipt,
the file has not become corrupted. TCP will handle all the error checking and guarantee that it will
arrive as you sent it. On the other hand, imagine you are sending 1000 messages detailing player
position data every second in a computer game. The application will be able to tolerate missing
messages here so UDP would be more suitable.

Addressing

Using Internet Sockets, we can identify a host using an IP address and a port number. The IP address
uniquely identifies a machine while the port number identifies the application we want to contact at
that machine. There are a range of well known port numbers, such as port 80 for HT'TP, in the range
0 - 1023. When choosing port numbers, anything above the well know port number range should be
fine, but you cannot guarantee that another application will not be already using it.

Programming with Sockets

This section introduces the Windows Sockets API. Note that the sample networking code in the
framework conceals this from the programmer, and it is discussed here to aid your understanding of

=W N -

DO WN -

what happens ‘under the hood’.

Windows-Specific Functions

All the methods for declaring and using sockets are available in two header files:

#include <winsock2.h>
#include <ws2tcpip.h>

Windows Socket Header Files

You will also need to link the ws2_32.1ib library in your project settings.

The first thing we have to do before being able to declare or use a socket is make a call to the
WSAStartup() method.

int WSAStartup(
WORD version, // highest version of winsock
WSADATA *data // pointer to WSADATA struct
)

WSAStartup() function declaration

This method must be called first before any other calls involving the sockets library. This method
simply allows the programmer to define the version of the Windows sockets specification to be used
and stores the result in the WSADATA struct.

Complimentary to WSAStartup(), we also have WSACleanup() which should be called at the end
of your program when you no longer require the use of the socket library.

int WSACleanup (void);

WSACleanup() function declaration

You will also find WSAGetLastError () useful when you need to perform some error checking or
debug your code:

int WSAGetLastError (void);

WSAGetLastError() function declaration

This method takes no parameters and returns the error status for the last socket operation that
failed. The range of error codes that can be returned is too extensive to discuss here. You find a
detailed list of all return codes and values in the Sockets documentation.

Addressing Information

Having initialised the API we now need to set up the address we will be listening on (if we are the
server) or the one we will be sending to (if we are the client). The function getaddrinfo() is going
to help us out here.

int getaddrinfo (
const char *name , // host name or IP
const char *service, // service name or port
const struct addrinfo *hints , // socket info
struct addrinfo *result // result struct

);

getaddrinfo() function declaration

We either provide NULL to the name parameter if we are creating our server and in the case of
the client we want to provide a host name string or IP address. The service parameter takes either a
string service name (e.g. http translates to port 80) or the port number. We then have two addrinfo
structs. We need to populate the hints struct with some some option settings before calling the
function. The result struct stores the results after the function has been executed.

© 00 ~NO O WN -

10

g W N

typedef struct addrinfo {
int ai_flags; // socket options
int ai_family; // address family
int ai_socktype; // socket type
int ai_protocol; // protocol type
size_t ai_addrlen; // ai_addr length
char *ai_canonname; // canonical name
struct sockaddr *ai_addr; // pointer to sockaddr struct
struct addrinfo *ai_next; // next addrinfo struct
s

addrinfo struct typedef
There are quite a few fields here so we look a little closer at the important ones:

e ai_flags - Here we can set some flags to change the socket options. There are a number
of options available that you can find in the API. The only one we will need for now is the
AT _PASSIVE flag. This indicates that the socket we will be creating will be used in a call to
the function bind(). We must bind to a socket if we plan on listening for messages, i.e. we are
creating a server program.

e ai family - This is the address family we will be using. For IPv4 we would use the flag AF_INET
and for IPv6 the flag is AI_INET6. We do not have to specify the address family if we want to
be able to use both versions. The flag for this is AF_UNSPEC.

e ai_socktype - Heres where we can specify the socket type, stream (SOCK_STREAM) or datagram
(SOCK_DGRAM).

These are the fields that you will want to populate for the hints struct. The results struct is a
linked list as the call to the host may return multiple results. Often only one struct will be returned
but you cannot guarantee that the one you want will be the first one if more than one has been found.
As such, it is recommended that you traverse the list and check for the one you require, making sure
it has been initialised correctly.

Binding a Socket

We have declared our socket but if we plan to receive messages using it then we need to bind to it
using the bind () function. The purpose of binding is to associate a local address with a socket. The
server always needs to call the bind function as it is going to listen for new connection requests and
serve them. For clients it is enough to connect to the server without a prior call to bind.

int bind(
SOCKET s, // socket to bind to
const struct sockaddr *name , // local address info
int namelen // length of *name

);

bind() function

Again we have most of the parameters already defined. The socket descriptor comes from our call
to socket () and the sockaddr struct is stored within our addrinfo struct that we created with the
call to the getaddrinfo() function. If no error has occurred, bind () returns zero.

Connecting to a Socket

For a client to send messages to a remote host (i.e. the server) we need to connect to that host.

int connect (
SOCKET s, // socket to connect to
const struct sockaddr *name , // remote address info
int namelen // length of *name

5/);

SwWw N -

o O WN -

connect() function

Notice that the function signature of connect() is exactly the same to bind(). The difference
between the two functions is that bind () is used by the server and creates a local socket using local
address information, while connect () uses the information of the remote host that we want to connect
to. If no error has occurred, connect () returns zero.

Listening for Connections

For our server, having already specified our address information, created a socket and bound to it, we
now need to listen for new connections requests from clients.

int listen(
SOCKET s, // socket to listen on
int backlog // max. incoming queue length

¥

listen() function

The backlog integer is used to specify the maximum length of the incoming connection queue.
A client needs to connect to the server and this will only be successful when the server accepts the
connection request. Here we can specify how many connections can be queued waiting to be accepted.
This value will vary given the network conditions for the server.

The flag SOMAXCONN can be used which instructs the underlying service provided (i.e. the operating
system) to set the length of the queue to a some reasonable value. If a client attempts to connect to a
server whose backlog queue is full, it will receive a connection refused error. If no error has occurred,
listen() returns zero.

Accepting Connections

We have told our server to listen on a specific socket for incoming connection requests. When a
connection request is received the server to needs to accept it to service the client.

SOCKET accept (

SOCKET s, // socket the server listens on
struct sockaddr *xaddr // incoming connection details
int xaddrlen // length of *addr

)

accept() function

Calling accept () will cause the first connection on the pending queue to be taken and a new
socket created for it. This new socket will handle all interaction between the server and the client
that requested the connection. The original socket still exists and is used to service new connection
requests.

Sending and Receiving

Now we are at the point where our server has accepted a clients connection request and created a new
socket for it to accept and send messages.

int send(

SOCKET s, // socket to send with

const char *buf // data we’re sending

int len // length of *buf

int flags // sending options - see API

send() function

DO WN -

0 ~NO O WN -

O ~NO O WN -

N

int recv(
SOCKET s, // socket to receive from
const char *buf // buffer to receive incoming data
int len // length of *buf
int flags // receiving options - see API
)

recv() function

The two functions are very similar, essentially mirroring one another. A socket is required to either
send to or receive from and then data in the buffer is either sent or data is received into an empty
buffer. The available flags can be found in the API and let you alter the actions of the associated
function call. For example, we can set a flag to peek at the packet of the queue without actually
removing it from the queue.

If we are using datagram sockets we have two different functions for sending and receiving.

int sendto(
SOCKET s, // socket to send with
const char *buf // data we’re sending
int len // length of *buf
int flags // sending options - see API
const struct sockaddr *to // address of target socket
int tolen // length of x*to

);

sendto() function

int recvfrom(
SOCKET s, // socket to receive from
const char *buf // buffer to receive incoming data
int len // length of *buf
int flags // receiving options - see API
const struct sockaddr *from // info of client receiving from
int fromlen // length of *from

);

recvirom() function

Again, these are both very similar to the stream socket functions but we have the addition of the
sockaddr struct. For sendto() the struct contains address information for the host we want to send
to. This is used as an input to the function so it has to be constructed prior to the call.

With the recvfrom() function, the sockaddr struct is used as an output and stores details about
the machine that the message was sent from. As we do not create any connections for a datagram
socket, we have no information about the host we are receiving from. After receiving a message the
details (address, port) are stored in the struct.

Tidying Up

When we are finished with a socket, we need to close it.

int closesocket (
SOCKET s // socket we are going to close
);

closesocket() function

We provide the socket descriptor of the socket we want to close. This ensures that the socket
is closed cleanly and the memory it has used is reclaimed. If any subsequent function calls using a
socket descriptor that has been closed will result in a socket error. Also remember that when you has
completely finished using the Windows sockets API you want to call the WSACleanup() method.

Clients and Servers

The difference between client and server is, largely, contextual, particularly where games are concerned.
The server can normally be considered the host of most operations, and the arbiter of conflicting data.
In that sense, for example, the server manages the interactions between clients, and resolves differences
between their world views.

If we consider the example on an MMO, the server controls NPC ATl and, in cases where NPC Al
routines are duplicated on the client (more on this in our second tutorial), has authority where two
results differ. As an example, if the server says an NPC is moving at velocity v, and the client says the
NPC is moving at velocity u, the server view normally has priority and the client would interpolate
towards that result. The same is true if multiple clients all differ from the server view; in this way,
we tend towards consistency of perception.

In terms of the actual engineering, the differences generally lie in the fact that the server is ex-
pected to receive many connections (one for each client, at least), while the client anticipates only one
(its connection to the server). This does not hold true for peer-to-peer architectures, where clients are
expected to maintain many connections, but in such cases the engineering differences between client
and server reduce significantly (if, indeed, there is a server at all).

What is universally to be expected, however, is that whichever you are writing - client, or server - it
should expect to send and receive data messages in some fashion. As such, many of the socket functions
discussed above will be present in both your server and client code, if you opt to use the Windows API.

For the purposes of accessibility, the framework includes sample code which abstracts away from
this low-level governance of sockets, providing the developer with a transparent means of communi-
cating between two systems. This event-driven library, ENet, is the subject of the second half of this
tutorial.

ENet Library

ENet is a UDP (ergo, datagram) network library designed to facilitate quick networking software
development. The library is described as thin, simple, and robust, providing event-based communi-
cation between peers (which can adopt roles of server and/or client). In addition, it has the option
to mimic the properties of stream sockets, which enables experimentation with TCP-esque behaviours.

Built into the framework you have been provided is example code for a server and a client employing
ENet. Much of this is self-explanatory, but this hand-out explains the basic premises on which it is
built.

Set-Up

To use ENet in a new project, you should include the header file, and ensure you have the requisite .lib
(this is provided for you in the framework download). You should also ensure you have your Visual
Studio project set to include the relevant directories.

#include <enet/enet.h>

Before using any ENet functions, your program should call the enet_initialize () function. This
function returns zero if no errors occur. When you exit your program, or are no longer going to employ
the ENet library, you should call the enet_deinitialize() function, which frees up any resources
the library has reserved.

Creating Servers and Clients

ENet refers to a server as a host with a specified address (to receive data and connections), and
generates it through the function enet_host_create(). Within our framework, this function is found

© 00 ~NO O WN -

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

DO WN -

inside the NetworkBase: :Initialize() function, which populates the properties of the server. The
code excerpt below illustrates the inputs for enet_host_create().

bool NetworkBase::Initialize(uintl6_t external_port_number,
size_t max_peers)
{
ENetAddress address;
address.host = ENET_HOST_ANY;
address.port external _port_number;

m_pNetwork = enet_host_create(
(external _port_number == 0) ? NULL : &address, //the address
// at which other peers may connect to this host. If NULL,
// then no peers may connect to the host.
max_peers, // the maximum number of peers that should be
// allocated for the host.
1, // the maximum number of channels allowed; if 0, then
// this is equivalent to ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT
0, // downstream bandwidth of the host in bytes/second; if O,
// ENet will assume unlimited bandwidth.
0); //upstream bandwidth of the host in bytes/second; if O,
// ENet will assume unlimited bandwidth.

if (m_pNetwork == NULL)
NCLERROR ("Unable to initialise Network Host!");

return false; // checks to ensure the server was initialized

return true;

NetworkBase::Initialise() function

Triggering this function will generate a server with the parameters provided to the create function.
Using these parameters, you can dictate how many peers (clients, in context) can connect to your host
- if an instance of the game hosted on your server can only hold 16 players, for example, you might
set max_peers to 16. On the other hand, if you have a lobby system, where players can jump into
an empty slot if another player disconnects, you might use a higher value and allocate players on the
'wait list’ to a lobby.

A client in ENet is simply a host that lacks a specified host address (e.g., address=NULL). It is
created in much the same way as a server, using the enet_host_create() function. The variables
dictating bandwidth (upstream and downstream) refer, instead, to the client’s bandwidth limits (e.g.,
57600 to emulate a 56k modem).

Connecting to and Disconnecting from a Host

A client initialises a connection to a foreign host using the function enet_host_connect(). In our
framework, this is called within the function NetworkBase: :ConnectPeer (), which accepts integers
which define the IP address you wish to connect to, along with the port number. You will notice that
enet_host_connect () itself accepts four parameters. They are, in order, the client, the address, and
the channels you wish to allocate.

ENetPeer* NetworkBase::ConnectPeer (uint8_t ip_partl, uint8_t ip_part2,
uint8_t ip_part3, uint8_t ip_part4, uintl6_t port_number)

{
if (m_pNetwork != NULL)

{
ENetAddress address;

© 00 N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

DO WN -

address.port = port_number;
//Host IP4 address must be condensed into a 32 bit integer
address.host = (ip_partd4 << 24) | (ip_part3 << 16)
| (ip_part2 << 8) | (ip_partil);
ENetPeer* peer = enet_host_connect(m_pNetwork, &address, 2, 0);
if (peer == NULL)
{
NCLERROR ("Unable to connect to peer: %d.%d.%d.%d:%d",
ip_partl, ip_part2, ip_part3, ip_part4, port_number);
}
return peer;
}
else
{
NCLERROR ("Unable to connect to peer: Network not
initialized!");
return NULL;
3
}

NetworkBase::ConnectPeer() function

Clients can be gently disconnected from a host using the enet_peer_disconnect () function. This
function sends a disconnect request to a foreign host, and the peer will then wait for an acknowledge-
ment from the server before disconnecting; this will generate an event of ENET_EVENT_TYPE _DISCONNECT
type - see below.

Another option to disconnect from a server, without waiting for acknowledgement, is provided by
the enet_peer_reset () function. In this case, the server receives no notification that the peer has
disconnected, and the connection will eventually time out.

The third option, employed by our framework, is the enet_peer_disconnect now() function. In
this case, a disconnect notification is sent to the host, but the client does not wait for confirmation
before disconnecting. Should the server not receive the notification, the connection will eventually
time out (as with enet_peer_reset()).

Event Management

ENet employs polled event management to inform the program when something has occurred that
should be reacted to in some fashion. These events are polled using the function enet_host_service(),
where an optional ping can be stipulated (in ms) to dictate how long ENet should look for an event. If
zero is used, enet _host_service () will return immediately if there are no events queued for dispatch.

Most network stack processing is handled through this function. As such, both ends of the con-
nection (server and client) need to regularly call the function in order to make sure data is being sent,
received, and responded to. One solution to this issue is to poll at the beginning of every loop of your
game engine, but a more circumspect approach can be employed so long as it is handled consistently.

A switch statement is normally used to delineate responses to different types of event. Within our
framework, enet_host_service() is called inside the function NetworkBase: :ServiceNetwork().

ENetPeer* NetworkBase::ConnectPeer (uint8_t ip_partl, uint8_t ip_part2,
uint8_t ip_part3, uint8_t ip_part4, uintl6_t port_number)

{
if (m_pNetwork != NULL)
{

ENetAddress address;

© 00 N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

© 00 ~NO O d WN -

NN, PP RPR P, PR PR
= O O 00 NO O b WD+~ O

address.port = port_number;

//Host IP4 address must be condensed into a 32 bit integer
address.host = (ip_partd4 << 24) | (ip_part3 << 16)
| (ip_part2 << 8) | (ip_partil);

ENetPeer* peer = enet_host_connect(m_pNetwork, &address, 2, 0);
if (peer == NULL)
{

NCLERROR ("Unable to connect to peer: %d.%d.%d.%d:%d",
ip_partl, ip_part2, ip_part3, ip_part4, port_number);

}
return peer;
}
else
{
NCLERROR ("Unable to connect to peer: Network not initialized!");
return NULL;
}

NetworkBase::ServiceNetwork() function

If an event is enqueued, the sample code in the Net1 Client: :ProcessNetworkEvent () function
responds to it. Here you can find the switch statement addressing each case that can be returned as
an event by the ENet API. We discuss each case below:

void Netl_Client::ProcessNetworkEvent (const ENetEvent& evnt)
{
switch (evnt.type)
{
// New connection request or an existing peer accepted
// our connection request
case ENET_EVENT_TYPE_CONNECT :

{
if (evnt.peer == m_pServerConnection)
{
NCLDebug::Log("Network: Successfully
connected to server!");
// Send a ’hello’ packet
char* text_data = "Hellooo!";
ENetPacket* packet = enet_packet_create(text_data,
strlen(text_data) + 1, 0);
enet_peer_send (m_pServerConnection, 0, packet);
b
X
break;

Net1_Client::ProcessNetworkEvent() function: CONNECT

This is the response to a peer connection - either a new connection request, or a peer has accepted
the connection request we’ve sent. In our sample code, a simple message is employed to signify a
connection has been made. A more sophisticated response to this event might trigger a series of func-
tions to generate data structures that we expect to be passing back and forth between server and client.

//Server has sent us a new packet
case ENET_EVENT_TYPE_RECEIVE:

10

© 00 N O O d W

10

12
13
14
15
16

O ~NO O W N -

{
if (evnt.packet->datalength == sizeof (Vector3))
{
Vector3 pos;
memcpy (&pos, evnt.packet->data, sizeof (Vector3));
m_pObj->Physics()->SetPosition(pos);
}
else
{
NCLERROR ("Recieved Invalid Network Packet!");
}
}
break;

Net1_Client::ProcessNetworkEvent() function: RECEIVE

This event type is triggered when we have received a packet from a peer. In the sample code,
we validate that the packet is of the size we anticipated (a Vector3), and if it is not then an error
message is returned. Again, you should be able to see where a more sophisticated series of responses
could be triggered to suit your coursework and game development requirements.

//Server has disconnected
case ENET_EVENT_TYPE_DISCONNECT:
{
NCLDebug::Log("Network: Server has disconnected!");
}
break;
}
}

Net1_Client::ProcessNetworkEvent() function

This event type is received when the server disconnects. In our sample code, a simple log is made
of the event, but you could envision a scenario where this message triggered some other function -
such as pausing progress of a game, while an attempt is made to reconnect to the server.

Sending Packets

The entire purpose of our network protocol is the sending and receiving of data of some form be-
tween systems. We refer to this data as a packet. The ENet library generates packets using the
enet_packet_create() function. This function requires us to specify the size of the packet (in our
framework example, found in main. cpp of the Network Server tutorial, this is the size of a Vector3).

We can optionally employ flags when we create a packet to assign certain properties to the packet.
As an example, the flag ENET_PACKET_FLAG_RELIABLE forces the packet to employ reliable delivery.
This means that once the packet is received, a confirmation of receipt shall be returned to the sender.
Several attempts will be made to deliver the packet if no confirmation of receipt is forthcoming. If a
specified number of retry attempts passes, ENet assumes that the peer has disconnected, forcefully
resetting the connection.

A packet is sent using the enet_peer_send() function, which accepts a destination, a broadcast
channel ID, and the packet to be sent. An example of the use of enet_peer_send() is found in the
code sample outlining the response to a ENET_EVENT_TYPE_CONNECT event, above.

A host can use the enet_host_broadcast() function to send a packet to every connected peer

across a chosen channel. An example of this code can be found in main.cpp of the Network Server
tutorial.

11

Lastly, we can optionally resize a packet using the enet_packet_resize() function. If, for exam-
ple, our packet size is dependent upon the number of clients connected to the server (as would be the
case in a multi-player FPS updating the positions of every other client with each packet), we could
resize our packet on the fly to accommodate connecting and disconnecting clients.

Similarly, the nature of our packets can obviously be more sophisticated than a simple Vector3. We
can define our own structure of required data, or an array of such structures, facilitating significantly
more detailed communication. In optimised network engineering, compressed encoding at the server
side and decoding at the client are common practise, if the amount of data being sent uncompressed
would cause a greater performance bottleneck than the act of encoding and decoding it.

Implementation

Explore the framework sample code for the Tuts_Network Client and Tuts_Network_Server projects.
Investigate ways to integrate server-client functionality into your existing physics system, to implement
a client-driven entity within your host environment. Consider how you might construct a client to
respond in a meaningful manner to data received from the server.

Tutorial Summary
We have introduced the concept of netcode through socket programming, as a means of facilitating

multi-player gameplay. We have discussed the low-level socket control provisioned by the Winsock
API, before presenting an accessible, higher-level event-based networking library with sample code.

12

